Problem 4.21

The raising and lowering operators change the value of m by one unit:

$$
\begin{equation*}
L_{+} f_{\ell}^{m}=\left(A_{\ell}^{m}\right) f_{\ell}^{m+1}, \quad L_{-} f_{\ell}^{m}=\left(B_{\ell}^{m}\right) f_{\ell}^{m-1} \tag{4.120}
\end{equation*}
$$

where A_{ℓ}^{m} and B_{ℓ}^{m} are constants. Question: What are they, if the eigenfunctions are to be normalized? Hint: First show that L_{\mp} is the hermitian conjugate of $L_{ \pm}$(since L_{x} and L_{y} are observables, you may assume they are hermitian... but prove it if you like); then use Equation 4.112. Answer:

$$
\begin{align*}
& A_{\ell}^{m}=\hbar \sqrt{\ell(\ell+1)-m(m+1)}=\hbar \sqrt{(\ell-m)(\ell+m+1)}, \\
& B_{\ell}^{m}=\hbar \sqrt{\ell(\ell+1)-m(m-1)}=\hbar \sqrt{(\ell+m)(\ell-m+1)} . \tag{4.121}
\end{align*}
$$

Note what happens at the top and bottom of the ladder (i.e. when you apply L_{+}to f_{ℓ}^{ℓ} or L_{-}to $f_{\ell}^{-\ell}$).

Solution

Begin by proving that the components of the (orbital) angular momentum operator, defined classically by

$$
\mathbf{L}=\mathbf{r} \times \mathbf{p}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right| \Rightarrow\left\{\begin{array}{l}
L_{x}=y p_{z}-z p_{y} \\
L_{y}=z p_{x}-x p_{z} \\
L_{z}=x p_{y}-y p_{x}
\end{array}\right.
$$

are hermitian. That is, the aim is to show that

$$
\langle f| L_{j}|g\rangle=\langle f| L_{j}^{\dagger}|g\rangle, \quad j=1,2,3
$$

where f and g are complex-valued functions that tend to zero as $|\mathbf{x}| \rightarrow \infty$. Suppose that $f=u+i v$, where u and v are real functions.

$$
\begin{aligned}
\langle f| L_{j}|g\rangle & =\iiint_{\text {all space }} f^{*} L_{j} g d \mathcal{V} \\
& =\iiint_{\text {all space }} f^{*}\left(\sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} x_{k} p_{l}\right) g d \mathcal{V} \\
& =\sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} f^{*} x_{k} p_{l} g d \mathcal{V} \\
& =\sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} f^{*} x_{k}\left(-i \hbar \frac{\partial}{\partial x_{l}}\right) g d \mathcal{V}
\end{aligned}
$$

Continue the simplification.

$$
\begin{aligned}
& \langle f| L_{j}|g\rangle=-i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} f^{*} x_{k} \frac{\partial g}{\partial x_{l}} d \mathcal{V} \\
& =-i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f^{*} x_{k} \frac{\partial g}{\partial x_{l}} d x_{j} d x_{k} d x_{l} \\
& =-i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \int_{-\infty}^{\infty} x_{k} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f^{*} \frac{\partial g}{\partial x_{l}} d x_{l}\right) d x_{j} d x_{k} \\
& =-i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \int_{-\infty}^{\infty} x_{k} \int_{-\infty}^{\infty}(\underbrace{\left.f^{*} g\right|_{-\infty} ^{\infty}}_{=0}-\int_{-\infty}^{\infty} \frac{\partial f^{*}}{\partial x_{l}} g d x_{l}) d x_{j} d x_{k} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{k} \frac{\partial f^{*}}{\partial x_{l}} g d x_{j} d x_{k} d x_{l} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} x_{k} \frac{\partial f^{*}}{\partial x_{l}} g d \mathcal{V} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} x_{k}\left[\frac{\partial}{\partial x_{l}}(u-i v)\right] g d \mathcal{V} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} x_{k}\left(\frac{\partial u}{\partial x_{l}}-i \frac{\partial v}{\partial x_{l}}\right) g d \mathcal{V} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} x_{k}\left(\frac{\partial u}{\partial x_{l}}+i \frac{\partial v}{\partial x_{l}}\right)^{*} g d \mathcal{V} \\
& =i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} \iiint_{\text {all space }} x_{k}\left(\frac{\partial f}{\partial x_{l}}\right)^{*} g d \mathcal{V} \\
& =\iiint_{\text {all space }}\left(-i \hbar \sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} x_{k} \frac{\partial f}{\partial x_{l}}\right)^{*} g d \mathcal{V} \\
& =\iiint_{\text {all space }}\left[\sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} x_{k}\left(-i \hbar \frac{\partial}{\partial x_{l}}\right) f\right]^{*} g d \mathcal{V}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\langle f| L_{j}|g\rangle & =\iiint_{\text {all space }}\left[\left(\sum_{k=1}^{3} \sum_{l=1}^{3} \varepsilon_{j k l} x_{k} p_{l}\right) f\right]^{*} g d \mathcal{V} \\
& =\iiint_{\text {all space }}\left(L_{j} f\right)^{*} g d \mathcal{V} \\
& =\langle f| L_{j}^{\dagger}|g\rangle
\end{aligned}
$$

which means the components of the orbital angular momentum operator are hermitian. L_{-}and L_{+}are the ladder operators associated with the orbital angular momentum eigenstates f_{ℓ}^{m}. They're defined as

$$
\left\{\begin{array}{l}
L_{-}=L_{x}-i L_{y} \\
L_{+}=L_{x}+i L_{y}
\end{array}\right.
$$

Show that L_{-}is the hermitian conjugate of $L_{+}: L_{-}=L_{+}^{\dagger}$.

$$
\begin{aligned}
\langle f| L_{-}|g\rangle & =\langle f| L_{x}-i L_{y}|g\rangle \\
& =\langle f| L_{x}|g\rangle-i\langle f| L_{y}|g\rangle \\
& =\langle f| L_{x}^{\dagger}|g\rangle-i\langle f| L_{y}^{\dagger}|g\rangle \\
& =\langle f| L_{x}^{\dagger}-i L_{y}^{\dagger}|g\rangle \\
& =\langle f|\left(L_{x}+i L_{y}\right)^{\dagger}|g\rangle \\
& =\langle f| L_{+}^{\dagger}|g\rangle
\end{aligned}
$$

Show that L_{+}is the hermitian conjugate of $L_{-}: L_{+}=L_{-}^{\dagger}$.

$$
\begin{aligned}
\langle f| L_{+}|g\rangle & =\langle f| L_{x}+i L_{y}|g\rangle \\
& =\langle f| L_{x}|g\rangle+i\langle f| L_{y}|g\rangle \\
& =\langle f| L_{x}^{\dagger}|g\rangle+i\langle f| L_{y}^{\dagger}|g\rangle \\
& =\langle f| L_{x}^{\dagger}+i L_{y}^{\dagger}|g\rangle \\
& =\langle f|\left(L_{x}-i L_{y}\right)^{\dagger}|g\rangle \\
& =\langle f| L_{-}^{\dagger}|g\rangle
\end{aligned}
$$

The square of the total angular momentum is $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$. The eigenvalue problems for it and for L_{z} in Equation 4.118 on page 160 are necessary to determine A_{ℓ}^{m} and B_{ℓ}^{m}.

$$
\begin{cases}L^{2} f_{\ell}^{m}=\hbar^{2} \ell(\ell+1) f_{\ell}^{m} & \ell=0,1 / 2,1,3 / 2, \ldots \tag{4.118}\\ L_{z} f_{\ell}^{m}=\hbar m f_{\ell}^{m} & m=-\ell,-\ell+1, \ldots, \ell-1, \ell\end{cases}
$$

To find A_{ℓ}^{m}, consider the following. Note $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$.

$$
\begin{aligned}
& \left\langle f_{\ell}^{m}\right| L_{-} L_{+}\left|f_{\ell}^{m}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} L_{-} L_{+} f_{\ell}^{m} d \mathcal{V} \\
& \left\langle f_{\ell}^{m}\right| L_{+}^{\dagger} L_{+}\left|f_{\ell}^{m}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L_{x}-i L_{y}\right)\left(L_{x}+i L_{y}\right) f_{\ell}^{m} d \mathcal{V} \\
& \left(\left\langle f_{\ell}^{m}\right| L_{+}^{\dagger}\right)\left(L_{+}\left|f_{\ell}^{m}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L_{x}-i L_{y}\right)\left(L_{x} f_{\ell}^{m}+i L_{y} f_{\ell}^{m}\right) d \mathcal{V} \\
& \left(L_{+}\left|f_{\ell}^{m}\right\rangle\right)^{*}\left(L_{+}\left|f_{\ell}^{m}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[L_{x}\left(L_{x} f_{\ell}^{m}+i L_{y} f_{\ell}^{m}\right)-i L_{y}\left(L_{x} f_{\ell}^{m}+i L_{y} f_{\ell}^{m}\right)\right] d \mathcal{V} \\
& \left(A_{\ell}^{m}\left|f_{\ell}^{m+1}\right\rangle\right)^{*}\left(A_{\ell}^{m}\left|f_{\ell}^{m+1}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[L_{x}^{2}+L_{y}^{2}+i\left(L_{x} L_{y}-L_{y} L_{x}\right)\right] f_{\ell}^{m} d \mathcal{V} \\
& \left\langle f_{\ell}^{m+1}\right|\left(A_{\ell}^{m}\right)^{*} A_{\ell}^{m}\left|f_{\ell}^{m+1}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[\left(L^{2}-L_{z}^{2}\right)+i\left[L_{x}, L_{y}\right]\right] f_{\ell}^{m} d \mathcal{V} \\
& \left(A_{\ell}^{m}\right)^{*} A_{\ell}^{m} \underbrace{\left\langle f_{\ell}^{m+1} \mid f_{\ell}^{m+1}\right\rangle}_{=1}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L^{2}-L_{z}^{2}-\hbar L_{z}\right) f_{\ell}^{m} d \mathcal{V} \\
& \left(A_{\ell}^{m}\right)^{*} A_{\ell}^{m}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L^{2} f_{\ell}^{m}-L_{z}^{2} f_{\ell}^{m}-\hbar L_{z} f_{\ell}^{m}\right) d \mathcal{V} \\
& \left|A_{\ell}^{m}\right|^{2}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[\hbar^{2} \ell(\ell+1) f_{\ell}^{m}-(\hbar m)^{2} f_{\ell}^{m}-\hbar(\hbar m) f_{\ell}^{m}\right] d \mathcal{V} \\
& =\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} \hbar^{2}[\ell(\ell+1)-m(m+1)] f_{\ell}^{m} d \mathcal{V} \\
& =\hbar^{2}[\ell(\ell+1)-m(m+1)] \underbrace{\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} f_{\ell}^{m} d \mathcal{V}}_{=1}
\end{aligned}
$$

Therefore, taking the square root of both sides,

$$
A_{\ell}^{m}=\hbar \sqrt{\ell(\ell+1)-m(m+1)} .
$$

To find B_{ℓ}^{m}, consider the following. Note $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$.

$$
\begin{aligned}
& \left\langle f_{\ell}^{m}\right| L_{+} L_{-}\left|f_{\ell}^{m}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} L_{+} L_{-} f_{\ell}^{m} d \mathcal{V} \\
& \left\langle f_{\ell}^{m}\right| L_{-}^{\dagger} L_{-}\left|f_{\ell}^{m}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L_{x}+i L_{y}\right)\left(L_{x}-i L_{y}\right) f_{\ell}^{m} d \mathcal{V} \\
& \left(\left\langle f_{\ell}^{m}\right| L_{-}^{\dagger}\right)\left(L_{-}\left|f_{\ell}^{m}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L_{x}+i L_{y}\right)\left(L_{x} f_{\ell}^{m}-i L_{y} f_{\ell}^{m}\right) d \mathcal{V} \\
& \left(L_{-}\left|f_{\ell}^{m}\right\rangle\right)^{*}\left(L_{-}\left|f_{\ell}^{m}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[L_{x}\left(L_{x} f_{\ell}^{m}-i L_{y} f_{\ell}^{m}\right)+i L_{y}\left(L_{x} f_{\ell}^{m}-i L_{y} f_{\ell}^{m}\right)\right] d \mathcal{V} \\
& \left(B_{\ell}^{m}\left|f_{\ell}^{m-1}\right\rangle\right)^{*}\left(B_{\ell}^{m}\left|f_{\ell}^{m-1}\right\rangle\right)=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[L_{x}^{2}+L_{y}^{2}-i\left(L_{x} L_{y}-L_{y} L_{x}\right)\right] f_{\ell}^{m} d \mathcal{V} \\
& \left\langle f_{\ell}^{m-1}\right|\left(B_{\ell}^{m}\right)^{*} B_{\ell}^{m}\left|f_{\ell}^{m-1}\right\rangle=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[\left(L^{2}-L_{z}^{2}\right)-i\left[L_{x}, L_{y}\right]\right] f_{\ell}^{m} d \mathcal{V} \\
& \left(B_{\ell}^{m}\right)^{*} B_{\ell}^{m} \underbrace{\left\langle f_{\ell}^{m-1} \mid f_{\ell}^{m-1}\right\rangle}_{=1}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L^{2}-L_{z}^{2}+\hbar L_{z}\right) f_{\ell}^{m} d \mathcal{V} \\
& \left(B_{\ell}^{m}\right)^{*} B_{\ell}^{m}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left(L^{2} f_{\ell}^{m}-L_{z}^{2} f_{\ell}^{m}+\hbar L_{z} f_{\ell}^{m}\right) d \mathcal{V} \\
& \left|B_{\ell}^{m}\right|^{2}=\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*}\left[\hbar^{2} \ell(\ell+1) f_{\ell}^{m}-(\hbar m)^{2} f_{\ell}^{m}+\hbar(\hbar m) f_{\ell}^{m}\right] d \mathcal{V} \\
& =\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} \hbar^{2}[\ell(\ell+1)-m(m-1)] f_{\ell}^{m} d \mathcal{V} \\
& =\hbar^{2}[\ell(\ell+1)-m(m-1)] \underbrace{\iiint_{\text {all space }}\left(f_{\ell}^{m}\right)^{*} f_{\ell}^{m} d \mathcal{V}}_{=1}
\end{aligned}
$$

Therefore, taking the square root of both sides,

$$
B_{\ell}^{m}=\hbar \sqrt{\ell(\ell+1)-m(m-1)} .
$$

Observe that applying the raising operator to the top rung ($m=\ell$) yields zero.

$$
\begin{aligned}
L_{+} f_{\ell}^{\ell} & =A_{\ell}^{\ell} f_{\ell}^{\ell+1} \\
& =\hbar \sqrt{\ell(\ell+1)-\ell(\ell+1)} f_{\ell}^{\ell+1} \\
& =0
\end{aligned}
$$

Observe that applying the lowering operator to the bottom rung ($m=-\ell$) also yields zero.

$$
\begin{aligned}
L_{-} f_{\ell}^{-\ell} & =B_{\ell}^{-\ell} f_{\ell}^{-\ell-1} \\
& =\hbar \sqrt{\ell(\ell+1)-(-\ell)[(-\ell)-1]} f_{\ell}^{-\ell-1} \\
& =\hbar \sqrt{\ell(\ell+1)-\ell(\ell+1)} f_{\ell}^{-\ell-1} \\
& =0
\end{aligned}
$$

